Part Number Hot Search : 
M050B MIC5203 C106B TDA3654Q 1660CT M050B AT1393A TDA1591T
Product Description
Full Text Search
 

To Download EVB3030A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
Features
n n n
Low supply current Analog received signal strength indicator (RSSI) available Analog AGC for digital-mode IF amplifiers Over 100 dB combined voltage gain
Proven double conversion architecture: First IF capability: 10 MHz to over 1000 MHz Second IF capability: 0.2 MHz to 2.0 MHz Dual second IF amplifiers and demodulators: Analog-mode limiting amplifier and FM quadrature detector Digital-mode linear AGC amplifiers with dual-mixer I & Q quadrature demodulator Accurate, onboard local oscillator phase splitter for digital quadrature demodulator Four enable/powerdown modes, selectable from two digital control pins, allow operation with minimal supply current
n n
n
Applications
n
n
IS-136 (North American dual-mode) cellular radio portable and mobile terminals Cellular radio base stations Digital satellite communications Multisymbol signaling receivers
n n n
n
DIGITAL SECTION VCC GND ENBA ENBD VCM AGC LOGIC AND BIAS CONTROL VARIABLE GAIN /4
I
CLK
Q
IF INPUT
ANALOG SECTION
AUDIO RSSI
LO
Figure 1. General Block Diagram
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Table of Contents
Features...............................................................................................................................................................1 Applications .........................................................................................................................................................1 Description...........................................................................................................................................................3 Pin Information.....................................................................................................................................................5 Absolute Maximum Ratings..................................................................................................................................7 Handling Precautions ...........................................................................................................................................7 Operating Ranges ................................................................................................................................................8 Electrical Specifications .......................................................................................................................................8 RSSI ..................................................................................................................................................................11 Quadrature Detector...........................................................................................................................................11 Quad Tank S-Curves ......................................................................................................................................12 Test Circuit Diagram ..........................................................................................................................................14 Characteristic Curves.........................................................................................................................................15 Outline Diagram.................................................................................................................................................20 32-Pin TQFP......................................................................................................................................................20 Manufacturing Information .................................................................................................................................21 Ordering Information ..........................................................................................................................................21
2
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
parallel amplifier/demodulator sections. In the analog second IF, there is a 40 dB amplifier followed by a 60 dB hard-limiting amplifier and an FM quadrature detector (noncoherent discriminator). The signal path between the 40 dB and 60 dB amplifier stages is brought off-chip for external filtering purposes. In digital mode, an AGC amplifier provides gain between 10 dB and 80 dB. The digital signal is demodulated in double-balanced mixers that are fed with an external local oscillator (LO) signal. The external LO passes through a divide-by-four counter to provide the final IF LO frequency. This architecture greatly reduces the possibility of feedback of the external LO signal to the IF input, which would cause dc offsets at the I & Q outputs. This circuit also provides a 90 phase shift of the LO that is independent of duty cycle. The resulting I & Q differential pairs can be level-shifted using the VCM input pin, providing flexibility in interfacing to digital processing ICs. A pair of logic inputs allows the device to be put into a powerdown mode and one of two partially enabled modes (analog or digital only), or a fully enabled mode, allowing the use of analog RSSI while in digital receive mode.
Description
The W3030 is a monolithic integrated circuit that provides most of the receive path functions required to meet the IS-136 (and IS-54) standard. The W3030 converts FM or digitally modulated IF carriers up to 200 MHz and provides required IF gain and separate baseband detectors for the two modulation modes. The W3030 is organized into three subfunctions (see Figure 2): 1. First IF mixer/amplifier 2. Analog second IF 3. Digital second IF sections (Note that the electrical specification tables correspond to each subfunction.) Each section has a buffered output to allow for external filtering, which also provides flexibility in system architecture selection. The first IF mixer section provides 30 dB of fixed voltage conversion gain (power gain = 17 dB). The first IF mixer also performs down-conversion to the 0.2 MHz--2.0 MHz range, which allows the use of inexpensive ceramic filters at two points in the signal path. In the second IF section, the signal path may be split between two
Lucent Technologies Inc.
3
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Description (continued)
IFDACG GND2 IFDIN IFDIN VCM AGC
I
32 1 FM DEMOD & RSSI 2
31
30
29
28
27
26
I 25 24
RSSI
50 k
CLK
AUDIO
/4
2 k 48 k
23
Q
QUAD
3
49 k
22 AGC AMP I/Q DEMODULATOR 21
50 k
Q
IFAOUT
4 ANALOG SECOND IF LIMITER
ENBA
IFAACG
5
1 k
20 FIRST IF MIXER/AMPLIFIER 10 MHz--1000 MHz 19
ENBD
IFAIN
6
IF1IN
IFAIN
7
50 k
SECOND IF AMP 0.2 MHz--2.0 MHz
18
IF1IN
VCC2
8
17
VCC1
1 k
48 k
2 k
1 k
9
10
11
12
13
14
15
16
IF2ACG
IF2IN
IF2IN
IF2OUT
GND1
IF1OUT
IF1LO
Figure 2. Detailed Block Diagram with Pinout
4
IF1LO
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
Pin Information
Table 1. Pin Descriptions Pin Number 1 2 3 4 5 6 Pin Name RSSI AUDIO QUAD IFAOUT IFAACG IFAIN Pin Description Received Signal Strength Indicator. Provides logarithmic (dB-linear) dc output voltage. Audio Output. Audio output of FM detector. Quad Input. Input to FM detector from parallel LC quad coil. Analog Output. Output of analog section limiting amplifiers; couple to quad coil and pin 3 (QUAD) with 10 pF capacitor. Analog Signal Ground. Signal ground for analog section limiting amplifier; connect to ground with 0.1 F capacitor. Analog Mode Limiter Input. Differential input to analog IF limiting amplifier; to be directly coupled to dielectric sources such as ceramic filters. Pin 6 is approximately 1 k with pin 5 ac-grounded. Analog Mode Limiter Input (Inverting). Differential input to analog IF limiting amplifier. To be ac-grounded. Second IF Power Supply. Positive power supply connection for both analog and digital second IF amplifiers and demodulators. Second IF Output. Output of 40 dB second IF amplifier; directly couple to dielectric loads such as ceramic filters. Includes internal 1 k termination resistor. Second IF Signal Ground. Signal ground for 40 dB second IF amplifier; connect to ground with 0.1 F capacitor. Second IF Input. Differential input to 40 dB second IF amplifier; to be directly coupled to dielectric sources such as ceramic filters. Pin 11 is approximately 2 k with pin 10 ac-grounded. Second IF Input (Inverting). Differential input to 40 dB second IF amplifier. To be ac-grounded. First IF Mixer Ground. Power supply (dc) ground for first IF mixer section. First IF Mixer Output. Output of first IF mixer/amplifier section; to be directly coupled to dielectric loads such as ceramic filters. Includes internal 1 k termination resistor. First IF Mixer Logical Input (Inverting). Differential input to first IF mixer local oscillator; to be capacitively coupled to sources with a dc level offset. First IF Mixer Logical Input. Differential input to first IF mixer local oscillator. To be ac-grounded. First IF Mixer Power Supply. Positive power supply connection for first IF mixer/amplifier section. First IF Mixer Input (Inverting). Differential input to first IF mixer/amplifier section; to be ac-coupled to ground or source. First IF Mixer Input. Differential input to first IF mixer/amplifier section.
7 8 9
IFA IN VCC2 IF2OUT
10 11
IF2ACG IF2IN
12 13 14
IF2 IN GND1 IF1OUT
15 16 17 18 19
IF1 LO IF1LO VCC1 IF1 IN IF1IN
Lucent Technologies Inc.
5
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Pin Information (continued)
Table 1. Pin Descriptions (continued) Pin Number 20 21 22 23 24 Pin Name ENBD ENBA Q Q CLK Pin Description Enable Digital Mode. Positive logic enable connection for digital mode operation. Enable Analog Mode. Positive logic enable connection for analog mode operation. Q Output. Differential output from Q mixer of quadrature demodulator. Q Output (Inverting). Differential output from Q mixer of quadrature demodulator. Clock Input. Local oscillator (clock) input to quadrature demodulator phase shifter; to be capacitively coupled. Input frequency must be four times second IF center frequency. I Output (Inverting). Differential output from I mixer of quadrature demodulator. I Output. Differential output from I mixer of quadrature demodulator. Automatic Gain Control. AGC control input; to be connected to dc source of 0.25 V--1.55 V. Common-Mode Voltage. Common-mode voltage dc offset set point for I & Q interface, typically VCC/2. Digital Signal Ground. Signal ground for digital section limiting amplifier; connect to ground with 0.1 F capacitor. Digital Second IF Input. Differential input to digital section AGC amplifier; to be directly coupled to dielectric sources such as ceramic filters. Pin 30 is approximately 2 k with pin 29 ac-grounded. Digital Second IF Input (Inverting). Differential input to digital section AGC amplifier. To be ac-grounded. Second IF Ground. Power supply ground for both analog and digital second IF amplifier and demodulator sections.
25 26 27 28 29 30
I
I AGC VCM IFDACG IFDIN
31 32
IFD IN GND2
Table 2. Digital Control Pin Truth Table Control Pin ENBA LOW LOW HIGH HIGH ENBD LOW HIGH LOW HIGH All Sleep. All receive circuits powered down, supply current <10 A. Digital Receive. First IF mixing stage, AGC amp and I/Q quadrature demodulators active. Analog/FM Receive. First IF mixing stage, 40 dB IF amp, 60 dB limiting amp, RSSI, and FM detector active. All Active. All receive circuits functional, e.g., digital mode I & Q demodulator used with analog RSSI. Mode/Function
6
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. Parameter Ambient Operating Temperature Storage Temperature Lead Temperature (soldering, 10 s) Positive Supply Voltage Power Dissipation Output Current (continuous) ac Peak-to-peak Input Voltage Enable Input Voltage VCM, AGC Input Voltage Min -35 -65 -- 0 -- -- 0 -0.3 -0.3 Max 100 150 300 4.5 650 160 VCC VCC + 0.4 VCC + 0.4 Unit C C C Vdc mW mA Vdc Vdc Vdc
Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Lucent Technologies Microelectronics Group employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the model. No industry-wide standard has been adopted for CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by using these circuit parameters: W3030 ESD Threshold Voltage ESD Model HBM CDM Rating 1500 V 1500 V
Lucent Technologies Inc.
7
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Operating Ranges
Performance is not guaranteed over the full range of all conditions possible within this table. However, this table lists the ranges of external conditions in which the W3030 provides general functionality, which may be useful in specific applications, without risk of permanent damage. The conditions for guaranteed performance are described below. Table 3. W3030 Operating Ranges Parameter Supply Voltage First IF Mixer/Amplifier Section: Input Frequency Range LO Frequency LO Input Level Range Digital Second IF Amplifier, AGC Quadrature Demodulator Section: Second IF Frequency Quadrature Demodulator LO (CLK) Frequency CLK Input Level (square wave) Analog Second IF Amplifier Frequency VCM Input Range Min 2.7 10 10 -10 0.1 0.4 -10 0.1 1.25 Max 4.1 1000 1000 6 4 16 6 4 VCC - 0.8 Unit Vdc MHz MHz dBm/50 MHz MHz dBm/50 MHz V
Electrical Specifications
The following apply to all specifications, unless otherwise listed: TA = 25 C 3 C; VCC = 2.7 Vdc; PIF1LO = -3 dBm to +3 dBm/50 ; IF1 = 10 MHz to 200 MHz; IF2 = 0.2 MHz to 2 MHz; ENBA = ENBD > 1.9 Vdc. Table 4. dc and Logic Parameters Parameter Supply Current: Fully Enable (VCC = 3.3) Analog Only Mode (VCC = 3.3) Digital Only Mode (VCC = 3.3) Sleep Mode (VCC = 3.3)
VIHMIN VILMAX IILMAX (VI = 0.7 V) IIHMAX (VI = VCC)
Min -- -- -- -- 1.9 -- -- -- --
Typ 8 5 5 <1 -- -- 0 30 30
Max 11 8 8 10 -- 0.7 10 250 --
Unit mA mA mA A V V A A s
Enable Time (external capacitor dependent)
8
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
Electrical Specifications (continued)
Table 5. First IF Mixer/Amplifier Section IF deviation = 0.5 MHz. Parameter Voltage Gain (with input matching network from 50 source) Power Gain Gain Flatness within IF Deviation Noise Figure at IF Input (SSB) 1 dB Compression Point at Input to Matching Network IP3 at First IF Matching Network Input IF Input Impedance @ 82 MHz LO Input Impedance @ 82 MHz IF Output Impedance LO Suppression at IF Input (relative to LO input level) Min -- -- -- -- -- -- -- -- -- -- Typ 30 17 0.2 14 -27 -17 1.7 II 1.8 4 II 1.5 1.0 40 Max -- -- -- -- -- -- -- -- -- -- Unit dB dB dB dB dBm dBm k II pF k II pF k dB
Table 6. Analog Second IF Amplifier, Limiter, RSSI, FM Detector Section Filter ZIN = ZOUT = 1.0 k; 6 dB attenuation between 40 dB amplifier output and 60 dB limiting amplifier input; 1 kHz FM at 8 kHz deviation; IF filter bandwidth = 28 kHz. Quad tank Q = 10. Parameter IF Gain (net) IF2IN to Audio RSSI Range of Input Signal RSSI Output Voltage with -20 dBm/50 into IF1IN RSSI Output Voltage with -110 dBm/50 into IF1IN RSSI Linearity over -100 dBm to -35 dBm into IF1IN RSSI Transfer Function RSSI Current Capability IF Input Impedance (40 dB amplifier) IF Output Impedance (40 dB amplifier) IF Input Impedance (60 dB limiter) IF Output Impedance (60 dB limiter) IP3 of 40 dB Amplifier Section (at its output) FM Detector Input Impedance (quad, pin 3) Audio Output Impedance Audio Output Amplitude (IF1IN = -35 dBm) Audio SINAD for IF1IN = -35 dBm (C-message weighting filter) Min -- 65 1.75 0.4 -- 13 -- -- -- -- -- -- -- -- 150 32 Typ 86 90 2.1 0.7 0.8 17 100 2 1 1 1 3 40 500 220 -- Max -- -- 2.6 0.92 2.5 25 -- -- -- -- -- -- -- -- 270 -- Unit dB dB V V dB mV/dB A k k k k dBm k mVrms dB
Lucent Technologies Inc.
9
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Electrical Specifications (continued)
Table 7. Digital Second IF Amplifier, AGC, Quadrature Demodulator Section PCLK = 320 mVp-p to 640 mVp-p (square wave); IF deviation = 0.5 MHz; VCM = 1.3 Vdc to VCC - 0.8 Vdc. Parameter IF Input Impedance CLK Input Impedance Baseband: -3 dB Bandwidth AGC Control Input Resistance AGC Control Voltage Range AGC Transfer Function AGC Gain Linearity, VAGC = 0.3 to 1.1 I and Q Phase Accuracy I and Q ac Amplitude Mismatch I and Q Maximum Output Swing (differential, compressed) I and Q Common-mode Voltage as Function of VCM, i.e., VQ + V Q VI + V I or 2 2 I and Q Differential Offset Voltage I and Q Maximum Sink Current per Pin (sum of dc and peak ac) I and Q Maximum Source Current per Pin (sum of dc and peak ac) IP3 at Output (I or Q, differential) 1 dB Compression Point (at output, differential) Noise Figure @ IF Input, Differential I + jQ VCM Input Impedance Table 8. Digital Gain and First IF Mixer Input to Baseband PCLK = 320 mVp-p to 640 mVp-p (square wave); IF deviation = 0.5 MHz; VCM = 1.3 Vdc to VCC - 0.8 Vdc. Gain numbers include -1.5 dB filter loss. Parameter Gain VAGC = 1.1 V Gain VAGC = 0.3 V Min 91 36 Typ 99 54 Max 128 60 Unit dB dB Min -- -- -- -- -- 11 -- -2 -0.3 -- Typ 2 28 II 8.2 150 500 0.9 0.65 18 1.5 0.4 0.05 2 Max -- -- -- -- -- 23 2.5 2 0.3 -- Unit k k II pF kHz k Vdc mV/dB dB degrees dB Vp-p Vdc
VCM - 0.08 VCM input VCM + 0.08
-- -- -- -- -- -- --
0 100 1 15 7 11 400
35 -- -- -- -- -- --
mV A mA dBm/50 dBm/50 dB k
10
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
RSSI
The RSSI output provides a voltage level that is proportional to the amount of signal present in the analog second IF section. This voltage level is generated internally by summing of the signal current at different points in the 40 dB and 60 dB IF chains. The amount of loss between the 40 dB and 60 dB sections will affect the RSSI linearity. Figure 3 contains two traces of RSSI voltage versus IF input power. One trace is with only the filter loss between the 40 dB and 60 dB amplifiers. The second trace is with a filter and a resistor, to give a total loss of 5.6 dB. The figure indicates a nonlinearity around the -75 dBm input level. This nonlinearity occurs because the 60 dB amplifier chain enters compression, causing less RSSI output. Eventually, as the input signal increases, the 40 dB amplifier will begin to contribute to the total RSSI. It was determined that 6 dB of interstage loss produces the optimal RSSI response. Most ceramic filters have less than 6 dB insertion loss. Therefore, some additional loss must be inserted in addition to the filter. The simplest way is to use a resistor in series with the filter. This method will cause a mismatch to the filter and may distort its passband response. An L or T configuration may be necessary to provide the required loss without mismatching the filter.
ATTN 1.4 dB ATTN 5.6 dB 2.2 1.9 1.6 RSSI (Vdc) 1.3 1 0.7 0.4 -125 -115 -105 -95 -85 -75 -65 -55 -45 -35 -25 IF1IN POWER (dBm)
Quadrature Detector
Figure 4 is a simplified schematic of the quadrature detector of the W3030. The quadrature detector circuit is similar to a mixer; but, instead of mixing two different frequencies, it multiplies two signals of the same frequency that are phase-shifted versions of each other. Multiplying the phase-shifted with the unshifted signals produces the audio portion of the FM signal.
IFAOUT CS AUDIO
CP
L
R
QUAD
CBYPASS
Figure 4. Quadrature Detector Before the IF signal is differentially applied to the multiplier, the signal is passed through a limiter stage to produce a constant amplitude signal. The same signal is brought out single-ended to pin 4, IFAOUT. The signal at IFAOUT is passed through a phaseshifting network (CS + CP + L + R). The phase-shifted signal is applied back to the lower portion of the multiplier at pin 3, QUAD. The parallel L/C resonant circuit provides frequency selective filtering at the IF frequency. The L/C tank must be ac-grounded at the IF frequency through a dc blocking capacitor (CBYPASS). Because information in an FM signal is contained in the deviation from the center frequency, the design of the resonant bandpass circuit is very important, particularly the load Q. A higher-loaded Q for a given deviation will produce a larger output signal than a lower Q circuit. However, a high Q circuit will permit only a limited amount of deviation from center frequency before distortion occurs. Figure 5 illustrates an equivalent quad tank circuit including the W3030 40 k input resistance. Equations 1 and 2 are used to calculate resonant frequency and tank circuit Q.
Figure 3. RSSI Out vs. IF1IN Power: 1.4 dB and 5.6 dB Loss Between 40 dB and 60 dB Amplifiers
Lucent Technologies Inc.
11
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Quadrature Detector (continued)
40 k
dc PIN 3 QUAD 150 pF 18 pF 4 pF--25 pF 680 F R
0.1 F
Figure 5. L/C Tank Equivalent Circuit 1 1
(680 * 6 ) * (184 * 10 ) (40 * 10 * 33 * 10 ) * (184 * 10 ) = 9.4 Q = 2 * f * RC = 2 * (450 * 10 ) * (40 * 10 + 33 * 10 )
2 LC 2
-10 -12 3 3 3 -12 3 3
f1 =
=
= 450 kHz
Equation (1)
Equation (2)
The W3030 evaluation board is designed with a 450 kHz IF frequency, as shown in our example. The Q of the tank circuit is set to 10 by the external resistor.
Quad Tank S-Curves
One method of determining if the Q of the tank is too large or too small is to produce an S-curve of the quad tank. An S-curve is a plot of the dc audio output voltage versus IF input frequency. With small deviations from center frequency, there is a proportional change in the dc audio output voltage. The overall linearity of the curve is determined by the Q of the tank circuit; therefore, the Q determines how much deviation is allowed before distortion of the audio signal occurs. The L/C tank circuit has a shunt resistor to set the Q of the tank. The procedure to produce these plots is as follows: 1. Remove the 450 kHz IF filter and drive the input of the limiting amplifier with a signal generator capable of FM modulation. 2. Apply FM modulation and adjust the tank capacitor for maximum audio out and minimal distortion. 3. Remove the FM modulation and sweep the IF frequency above and below center frequency while monitoring the dc voltage at the audio output. The following S-curves were produced with the value of the quad tank resistor varied from 18 k, to 30 k, to removing the resistor. The resistor value of 33 k, which corresponds to a Q of 10, was chosen as the optimal resistor value.
12
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
AUDIO (Vdc) LINEAR FIT 8 kHz ERROR (dB) 3
AUDIO (Vdc) LINEAR FIT 8 kHz ERROR (dB)
Quadrature Detector (continued)
Quad Tank S-Curves (continued)
0.5 0.4
2.5
1.5 1
0.3 0.2
3
AUDIO OUT (Vdc)
2
0.1 0
2.5 AUDIO OUT (Vdc) 0.5 0 -0.5 -1 1 -1.5 ERROR (dB) 2
1.5
-0.1 -0.2
1
-0.3 -0.4
1.5
0.5 390 400 410 420 430 440 450 460 470 480 490 500 510 520
-0.5
IF FREQUENCY (kHz)
0.5 390 400 410 420 430 440 450 460 470 480 490 500 510 520 -2
IF FREQUENCY (kHz)
Figure 8. Audio Output vs. IF Frequency, Quad Tank Resistor Removed
Figure 6. Audio Output vs. IF Frequency, 18 k Quad Tank Resistor
AUDIO (Vdc) LINEAR FIT 8 kHz ERROR (dB) 3 0.5 0.4 2.5 AUDIO OUT (Vdc) 0.3 0.2 2 0.1 0 1.5 -0.1 -0.2 1 -0.3 -0.4 390 400 410 420 430 440 450 460 470 480 490 500 510 520 0.5 -0.5 ERROR (dB)
IF FREQUENCY (kHz)
Figure 7. Audio Output vs. IF Frequency, 33 k Quad Tank Resistor
Lucent Technologies Inc.
13
ERROR (dB)
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Test Circuit Diagram
5V SW1 4 1 5 2 6 3 R7 1.5 k ENBD JP2
ENBA
JP1
5V R1 1.5 k C31 0.1 F 32 1 AUDIO C2 3300 pF L1 680 H 5%, Q > 30 C6 18 pF R3 18 k C8 10 pF C7 150 pF C4 4 pF-- 25 pF C9 0.01 F R2 2.2 k 2 3 4 5 6 C10 0.1 F 7 8 31
C32 0.1 F
R5 1.5 k
X1 30 29 28 27 26 25 C28 1000 pF 24 23 22 21 20 19 18 17 C22 1000 pF C20 2 pF-- 6 pF L2 330 nH C19 5.6 pF R8 50 CLK
RSSI C1 1000 pF
C5 0.1 F
C21 18 pF
IF1IN
C13 1000 pF
C18 1000 pF
R40 FLT2 SFGCG450 C11 0.1 F
9
10
11
12
13
14
15 C23
16
C33 0.1 F R5 50 C15 0.1 F FLT1 SFGCG450
1000 pF C16 1000 pF IF1LO
C14 0.1 F
X1
Figure 9. Test Circuit Diagram
14
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
RF = 83.16 MHz LO1 = 82.71 MHz IDEAL INPUT MATCHING NETWORK
0.2 0 -0.2
Characteristic Curves
Unless otherwise specified, VCC = 2.7 Vdc.
RF = 70 dBm 0.9 VAGC TEMP = -35 C, +25 C, AND +85 C FULL-ON MODE V_ENAB = VCC
12.00 11.00
COMPRESSION (dB)
-0.4 -0.6 -0.8 -1 -1.2
85 C
10.00
ICC (mA)
9.00 8.00
25 C
-1.4 -1.6
7.00 6.00 5.00 4.00 2.5
-35 C
-80
-70
-60
-50
-40
-30
-20
IF1IN POWER (dBm)
Figure 12. First IF Mixer Output Compression
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1
VCC POWER IF1LO = +3 dBm
Figure 10. ICC vs. VCC
RF = 70 dBm 0.9 VAGC TEMP = -35 C, +25 C, AND +85 C ANALOG AND DIGITAL PATHS DONE SEPARATELY
8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 0 0.5 1 1.5 2 2.5
-20 -30
REJECTION (dB)
-40 -50 -60 -70 -80 -90 0 200 400 600 800 1000 1200 1400 1600
+85 C ANALOG, -35 C DIGITAL, -35 C ANALOG, 25 C DIGITAL, 25 C ANALOG, 85 C DIGITAL, 85 C -35 C +25 C
ICC (mA)
FREQUENCY LO1 (MHz)
Figure 13. First IF Mixer: LO Rejection at IF Input vs. IF1LO
ENABLE VOLTAGE (Vdc)
Figure 11. ICC vs. Enable Voltage
Lucent Technologies Inc.
15
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
RF = 83.14 MHz to 83.18 MHz LO1 = 82.71 MHz IF = -20 kHz TO 20 kHz AROUND 450 kHz -30 dBm/50 ; 1 k OUTPUT LOAD
-13 -14 -15
Characteristic Curves (continued)
IF1OUT = 450 kHz POWER IF1IN = -30 dBm POWER IF1LO = -3 dBm NO INPUT MATCHING NETWORK
18 17 16
IF1OUT POWER (dBm)
-16 -17 -18 -19 -20 -21 -22 -23 -15 -10 -5 0 5 10 15
GAIN (dB)
15 14 13 12 11 10 0 200 400 600 800 1000 1200 1400 1600
IF1OUT FREQUENCY (MHz)
IF1IN (MHz)
Figure 16. First IF Mixer Bandwidth Figure 14. First IF Mixer: Conversion Voltage Gain vs. Frequency IF1IN
IF1OUT = 450 kHz POWER IF1IN = -30 dBm NO INPUT MATCHING NETWORK
-10 -15 -3 dBm -6 dBm -5 IF1OUT -15
RF = 83.156 MHz LO1 = 82.71 MHz IF = 450 kHz 2 * IF = 900 kHz 3 * IF = 1350 kHz IF1LO = -3 dBm
5
IF1OUT (dBm)
(dBm/50 )
-20 -25 -30 +3 dBm -35 -40 -45 -50 0 200 400 600 800
0 dBm
-25 -35 -45 -55 -65 IF1IN -75 -65 -55 -45 -35 -25 -15 -5 2 * IF1OUT
3 * IF1OUT
IF
OUT
1000 1200
1400 1600
POWER IF1IN (dBm)
IF1IN (MHz)
Figure 15. First IF Mixer: IF1OUT vs. IF1IN (LO1 @ -6, -3, 0, +3 dBm)
Figure 17. First IF Mixer: Significant Signals vs. Power IF1IN
16
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
F1 = 83.158 MHz LO = 82.71 MHz CLCK = 1.840 MHz TEMP = -35 C, +25 C, AND +85 C 0.9 VAGC (I SINGLE-ENDED) 80 kHz FILTER USED NO MODULATION
1 0 -1
Characteristic Curves (continued)
RF = 83.16 MHz LO1 = 82.71 MHz FCLCK = 1.804 MHz TEMP = -35 C, +25 C, AND +85 C
50 45 40
COMPRESSION (dB)
35
NF (dB)
30 25 20 15 10 5 0 -130 -110
NF (dB -35 2.7 V) NF (dB 25 2.7 V) NF (dB 85 2.7 V)
+85 C +25 C
-2 -3 -4 -5 -6 -7 -8 -9
-35 C
-90
-70
-50
-30
IF1IN POWER (dBm)
-10 -25
-20
-15
-10
-5
0
5
10
15
I OUTPUT POWER (dBm/50 )
Figure 18. First Mixer and Digital Second IF Section Noise Figure vs. IF1IN Power
RF = 83.158 MHz LO1 = 82.71 MHz CLCK = 1.840 MHz TEMP = +25 C 0.255 V, 0.575 V, 0.9 V, 1.225 V, AND 1.55 V (I SINGLE-ENDED) 80 kHz FILTER USED; NO MODULATION
1 0 -1
Figure 20. First Mixer and Digital Second IF Section Gain Compression vs. I Output Power
120.00 110.00 DIGITAL GAIN (dBm) 100.00 90.00 80.00 70.00 60.00 50.00 40.00
COMPRESSION (dB)
-2 -3 -4 -5 -6 -7 -8 -9 0.225 0.575 0.9 1.225 1.55 -40 -30 -20 -10 0 10
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
AGC INPUT VOLTAGE (Vdc)
-10
Figure 21. First Mixer and Digital Second IF Section Gain vs. AGC Input (-110 dBm)
POWER I OUTPUT (dBm)
Figure 19. First Mixer and Digital Second IF Section Gain Compression vs. I Output (Single-Ended)
Lucent Technologies Inc.
17
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
RF = 83.16 MHz LO1 = 82.71 MHz TEMP = -35 C, +25 C, AND +85 C 4.1 VCC 1 kHz FM MODULATION C-MESSAGE WEIGHTING
0.275 0.25
Characteristic Curves (continued)
RF = 83.16 MHz LO1 = 82.71 MHz TEMP = -35 C, +25 C, AND +85 C 2.7 VCC 1 kHz FM MODULATION C-MESSAGE WEIGHTING
0.275
+25 C +85 C -35 C
AUDIO (Vrms)
0.25 0.225 0.2 0.175 0.15 0.125 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20
0.225 0.2 0.175 0.15 0.125 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40
AUDIO (Vrms)
+25 C +85 C
-35 C
-30
IF1IN POWER (dBm)
IF1IN POWER (dBm)
Figure 22. First Mixer and Analog Second IF Section Audio vs. IF1IN Power (2.7 VCC)
Figure 24. First Mixer and Analog Second IF Section Audio vs. IF1IN Power (4.1 VCC)
RF = 83.16 MHz LO1 = 82.71 MHz TEMP = -35 C, +25 C, AND +85 C 2.7 VCC, 3.3 VCC, AND 4.1 VCC 1 kHz FM MODULATION C-MESSAGE WEIGHTING
40 35 30
RF = 83.16 MHz LO1 = 82.71 MHz TEMP = -35 C, +25 C, AND +85 C 3.3 VCC 1 kHz FM MODULATION C-MESSAGE WEIGHTING
0.275
+25 C +85 C
SINAD (dB)
25 20 15 10
0.25
+25 C AUDIO (Vrms)
0.225
-35 C
+85 C
0.2
-35 C
0.175 0.15 0.125 5 0 -130 -110 -90 -70 -50 -30 -10
IF1IN POWER (dBm)
-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20
Note: Minimum variation with voltage
IF1IN POWER (dBm)
Figure 25. First Mixer and Analog Second IF Section SINAD vs. IF1IN Power Figure 23. First Mixer and Analog Second IF Section Audio vs. IF1IN Power (3.3 VCC)
18
Lucent Technologies Inc.
-20
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
RF = 8S3.16 MHz LO1 = 82.71 MHz FCLCK = 1.804 MHz NO MODULATION 24 k RLOAD I SINGLE-ENDED 0.1 VAGC
40 0.9
Characteristic Curves (continued)
RF = 83.16 MHz LO1 = 82.71 MHz TEMP = -35 C, +25 C, AND +85 C 80% AM/1 kHz FM MODULATION C-MESSAGE WEIGHTING SINAD & COMPRESSION (dB)
0 -5 -10 -15
35 30 25 20 15 10 5 0
SINAD
0.8 0.7
AM LEAKAGE -35 C AM LEAKAGE 25 C AM LEAKAGE 85 C
0.5 0.4
-20 -25 -30
-35 C 25 C 85 C
VOUT
0.3 0.2 0.1
-35 -40 -130 -110 -90 -70 -50 -30
COMPRESSION
-5 -8 -6 -4 -2 0 2 4 6 8 0
POWER OUT (dBm)
IF1IN POWER (dBm)
Figure 26. First Mixer and Analog Second IF Section AM Sensitivity (Relative Audio Out) vs. IF1IN Power
RF = 83.16 MHz LO1 = 82.71 MHz 8 kHz FM MODULATION
-10.00 -11.00 -12.00
Figure 28. Digital Second IF Section SINAD, Output Voltage, and Compression vs. Output Power
VCC = 3.0 IS136 RANDOM-DATA DQPSK at 83.16 MHz IF1 IFLO 82.71 MHz @ 200 mVp-p CLOCK 1.8 MHz @ 600 mVp-p I & Q OUTPUT LEVELS HELD CONSTANT AT 0.5 Vp-p SINGLE-ENDED USING AGC UNTIL LARGE INPUT EXCEEDS RANGE
80.0 -24
EVM (% rms) & PHASE ERROR (deg)
AUDIO (dBV)
-13.00 -14.00 -15.00 -16.00 -17.00 -18.00 -40 -20 0 20 40 60 80 100
70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0
EVM PHASE ERROR I/Q OFFSET
-26 -28 -30 -32 -34 -36 -38 -40
2.7 Vcc 3.3 Vcc 4.1 Vcc
TEMPERATURE (C)
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
IF1 INPUT POWER (dBm)
Figure 29. EVM/Phase/Offset vs. IF1 Input Level
Lucent Technologies Inc.
0
Figure 27. Audio Output vs. Temperature
19
I/Q OFFSET (dB)
VOUT (Vrms)
0.6
(dB)
W3030 3 V Dual-Mode IF Cellular Receiver
Data Sheet April 1999
Outline Diagram
32-Pin TQFP
Dimensions are in millimeters.
9.00 0.20 7.00 0.20 PIN #1 IDENTIFIER ZONE
32 25
1.00 REF
0.25 GAGE PLANE
1 24
SEATING PLANE 0.45/0.75 7.00 0.20 9.00 0.20
DETAIL A
8
17
9
16
0.09/0.200
DETAIL A
DETAIL B 1.40 0.05
0.30/0.45 0.20
M
1.60 MAX SEATING PLANE 0.10 0.80 TYP 0.05/0.15
DETAIL B
12-3076
20
Lucent Technologies Inc.
Data Sheet April 1999
W3030 3 V Dual-Mode IF Cellular Receiver
Manufacturing Information
This device will be assembled in one of the following locations: assembly codes P, M, or T.
Ordering Information
Device Code LUCW3030ACA LUCW3030ACA-DB EVB3030A Description Bulk Tray Dry Pack Evaluation Board Package 32TQFP 32TQFP -- Comcode 107841082 107841090 107739377
Lucent Technologies Inc.
21
For additional information, contact your Microelectronics Group Account Manager or the following: INTERNET: http://www.lucent.com/micro E-MAIL: docmaster@micro.lucent.com N. AMERICA Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P.R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.
Copyright (c) 1999 Lucent Technologies Inc. All Rights Reserved
April 1999 DS98-399WRF (Replaces DS97-174WRF)


▲Up To Search▲   

 
Price & Availability of EVB3030A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X